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Abstract— In this paper, automated micro-sized objects ma-
nipulation is investigated. The novelty of the proposed method
lies on the compensation of all the nonlinear scaling forces
which are dominant over gravitational force. A dynamic neural
network has been added to a PD conventional controller for
automated micromanipulation control. Weight-updating rules
have been obtained in such a way that the system is uniformly
ultimately bounded (UUB) in the sense of Lyapunov. Simulation
results for controlled pushing of a micro-object have been
illustrated and the efficiency of the method has been shown
by comparing its result with that of a linear controller.

I. INTRODUCTION

Miniaturization of systems and tools has been much real-
ized in recent decades. The main drive toward micro/nano
electromechanical systems (MEMS/NEMS) has been the
ever-increasing need to save energy and material which can
be best achieved by almost weightless miniaturized devices.
They also help making special instruments that execute tasks
which are otherwise impossible to realize. These advantages,
however, have been accompanied by some big challenges:
Gravity and viscosity in Newtonian’s framework which have
served best in prediction of macro-scaled objects trajectory
now are beaten by other less-known surface forces such as
van der Waals, Kondo effect, capillary adhesion, electrostatic,
etc. As of today, there has not been any description which
could even roughly foresee the continuous states (position
and velocity, for instance) of particles and micro objects
under manipulation.

High precision positioning of micro and nano particles
is highly demanded of micro-assembly [1], cell and DNA
manipulation [2] and molecular interaction studies[3]. A
lot more fascinating capabilities of high precision micro
robotics in biomedical applications, such as drug delivery,
cell healing[4], and other surgical processes inside body has
become under attention for some years[5], [6]. For most of
these potential applications to materialize, characterizing the
dynamics of molecular forces is inevitable. Despite some
efforts to capture the mathematical model of these seemingly
week surface forces, much remains to be done before one
could base a micromanipulation controller on any analytical
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model. That explains why most of the micromanipulation
workstations either require a careful surveillance by an
operator [1], or are Tele-operated [7]. For most of the existing
setups, different trials have to be carried out for the cells and
particles to be positioned accurately.

There are countless types of mili and submili-sized insects
who can very dexterously manipulate micro objects. This fact
implies that they must somehow know the information on mi-
cro forces which we do not. Although part of this information
may come genetically with an insect when it is born, research
on Drosophila has revealed that the relatively simple structure
of most insects’ brain has the capability of learning[8]. Given
the relative simplicity of the structure of a bug’s brain, we
are highly inspired to apply artificial neural networks as an
adaptive control tool to capture the behavior of poorly-known
surface forces. Utility of neural networks as an intelligent
method in compensation of unknown, nonlinear friction force
in conventional robot manipulation has been represented in
literature [9]. Obviously, friction in macro systems usually
counts only for a small proportion of the dynamic system
which in a lot of cases treated as a disturbance or noises
in the controller loop. In contrast, micromanipulation deals
with a system whose response almost entirely stems from the
non-inertia forces. As such, application of artificial neural
networks in such a system is a novel work which requires
additional systematic investigation.

This paper has been organized as follows: In section II
we introduce the problem of ”pushing” as one of the fun-
damental way of micro-object manipulation. In section III is
proposed a controller strategy which employs artificial neural
network for micro particle pushing. Boundedness of its state
variables is discussed and a Lyapunov function is defined to
mathematically guarantee boundedness of displacement error
in pushing. In section IV, results from numerical analysis are
shown and comparison is made against a PD conventional
controller. This paper concludes with some remarks and
future works in section V.

II. BACKGROUND

Finding the physical variables of a system as input-output
relationship is the crucial step to analyze its behavior. Basi-
cally, pushing the block of Fig.1 can be formulated simply
as:

mq̈ + Ff + Fd = F (1)

where F, Ff , Fd,m and q̈ are delivered force by microactu-
ator, resistance force in contact area, disturbance, mass and
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resulting acceleration, respectively. The term, Ff , which is
also referred to as surface scaling force, is complicatedly
affected by parameters such as surface roughness, tempera-
ture, humidity, velocity, applied force, geometry of surface,
materials, electrostatic charge, etc. That makes it impossible
to derive a model for this surface force. On the other hand,
unlike conventional robotics, this force is considerably large
in comparison to the well-known gravitational force resulting
from the mass so that it can not be treated as a negligible
term, or at most, added to the disturbance on the system. It
is hence advantageous to define a learning mechanism which
can over some experimental trials be trained to fairly estimate
this force under given operating condition.

Fig. 1. Schematic of micro-object pushing

In[10], we introduced a comprehensive investigation to
bring together all influential parameters necessary to de-
termine the overall micro surface force. This force can be
represented as a function of the following variables:

Ff = f(q̇, Ra, E, ν, RH, T, A, Fa,m) (2)

where q̇ is relative velocity of the two surfaces in contact,
Ra represents surface roughness, RH is relative humidity, T
is temperature, E, ν, A and m are Young’s modulus, Poisson
ratio, surface area in contact and mass of the micro object,
respectively. Fa is the applied force. It should be noted
that physical parameters which are unlikely to vary during
pushing has omitted as variables.

III. CONTROL STRATEGY

A. NN Controller Design

In order to design the stable NN controller, the error
dynamics of the manipulator ought to be first considered.
In adaptive control of a manipulator, an auxiliary filtered
tracking error signal is often required to remove the ac-
celeration components from the dynamic equations. With
the same idea Lewis [11] introduced a filtered error to the
NN control. Here, a simple stable NN controller with the
filtered error is proposed to control a micromanipulator based
on Lyapunov function, which can guarantee the uniform
ultimate boundedness (UUB) of the closed-loop system under
some assumption. The convergence of the tracking error is
also guaranteed.

Given the desired tip-position trajectory, the tracking error
and its derivative are:

e = qd − q

e = q̇d − q̇

We define the filtered tracking error as:

r = ė + ke (3)

with k > 0. Differentiating (3) and invoking (1), it is seen
that the pushing dynamics can be described in terms of the
filtered tracking error as:

mṙ = kmr + Ff + Fd − F + mq̈d − k2me (4)

To set a NN-based controller, let:

F = F̂f + kvr + mq̈d − k2me (5)

where F̂f is an estimate of Ff , and kvr = kv ė+kvke an
outer PD tracking loop.

It should be noted that one could add another robust con-
trol term to (5) to robustify the controller against unmodeled
disturbance [9].

Fig. 2 is a block diagram of the mechanism of com-
pensation for the unmodeled scaling forces. The nine-input
single-output neural network will learn online by adjusting
the weights to compensate the effect of scaling forces.
The filtered tracking error is aggregated with the estimated
friction to generate an input force to the manipulator. Since
the effect of the mass of micro-sized objects is completely
suppressed by tracking error and estimated scaling forces, the
term mq̈d − k2me is safely negligible and can be omitted.

Fig. 2. Schematic block diagram of the pushing control with a NN-based
friction compensator

B. NN Approximation

According to the universal approximation property of
neural networks [13], there exist a two-layer NN such that:

Ff = WT σ(V T x) + ε (6)

where the weight matrices W and V are unknown to
be tuned in an unsupervised manner during pushing. These
ideal target weight matrices are not necessarily unique. The
approximation error is bounded on a compact set by ε ≤
εN , with εN a known bound. The activation function σ at



Fig. 3. Structure of the proposed two-layer Neural Network

the hidden layer is a nonlinear function (typically sigmoid
function).

Since the size of neural network is difficult to determine,
often the weight estimates of Ŵ and V̂ are used with a
certain size to approximate the function. That is:

F̂f = ŴT σ(V̂ T x) (7)

Then, the following weight estimation errors can be defined
as:

W̃ = W − Ŵ , Ṽ = V − V̂ (8)

The functional approximation errors can be defined as:

F̃f = Ff − F̂f (9)

And the hidden layer output error is described as:

σ̃ = σ − σ̂ (10)

where σ = σ(V T x) and σ̂ = σ(V̂ T x) and its Taylor series
expansion about V̂ T x is:

σ = σ̂ + σ′(V̂ T x).(Ṽ T x)2

⇒ σ̃ = σ′(V̂ T x).(Ṽ T x) + O(Ṽ T x)2 (11)

C. Training Algorithm

To prove the stability of the control system which is
augmented by a NN, several assumption and conditions have
to be considered. Those are outlined in this section.

Assumption 1 (Bounded Reference Trajectory): The de-
sired pushing trajectory is bounded so that:

∣∣∣∣∣∣

∣∣∣∣∣∣

qd(t)
q̇d(t)
q̈d(t)

∣∣∣∣∣∣
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≤ qB (12)

with qd , q̇d , q̈d the desired trajectory, desired velocity
and desired acceleration, respectively, and qB a known scalar
bound.

Lemma 1 (Bound on NN input x): For each time t, the NN
input vector x(t) is bounded.

Proof: the NN input vector x is:

x = [q̇ R E ν RH T A m]T

= [(q̇d − r + ke) R E ν RH T A m]T (13)

During pushing each micro particle, R, E, ν, A, and m
remain unchanged (= c1 > 0). Equivalently from the as-
sumption 1, one can extract ‖q̇d(t)‖ ≤ q̇B . Temperature and
relative humidity are evidently bounded by some constant
positive value c2 in total. Therefore:

|x(t)| ≤ c1 + c2 + q̇B + k |e|+ |r| (14)

The solution of the system (3) with the initial value
e(t0) = e0 is:

e(t) = e0 exp−k(t−t0) +
∫ t

t0

exp−k(t−τ) r(τ) dτ (15)

Thus,

|e| ≤ |e0|+ |r|
k

(16)

Then the bound can be derived as:

|x(t)| ≤ c1 + c2 + q̇B + k |e0|+ 2 |r| (17)

Then the NN input vector is bounded as long as the
controller guarantees that the filtered error r(t) is bounded.

Theorem 1: Consider the dynamic system of micro manip-
ulator described by (4), for the bounded, continuous desired
tip trajectory with bounded velocity and acceleration. NN
controller (5) can guarantee the uniform ultimate bundedness
of the close-loop system with the gains satisfying kv−km >
0, and the NN weight tuning algorithms given by:

Ẇ = Fσ̂r

V̇ = Gx(σ̂′T Ŵ r)T (18)

where F , G are the constant positive definite matrices.
Moreover, the weight estimates Ŵ and V̂ are bounded and
the filtered tracking error r goes to zero asymptotically.

Proof: By substitution of (7) to (5), the control signal
would become:

F = ŴT σ(V̂ T x) + kvr + mq̈d − k2me (19)

Now, by substitution of (19) and (6) into the error dynamics,
i.e. (4) and using the estimation errors in (8),(9), and (10),
one obtains:

mṙ = (km− kv)r + WT σ − ŴT σ̂ + (ε + Fd) (20)

Adding and subtracting WT σ̂ yields:

mṙ = (km− kv)r + W̃T σ̂ −WT σ̃ + (ε + Fd) (21)

Adding and subtracting ŴT σ̃ in (21) yields:

mṙ = (km− kv)r + W̃T σ̂ + ŴT σ̃ + W̃T σ̃ + (ε + Fd)

Substituting from (11) gives:

mṙ = (km− kv)r + W̃T σ̂ + ŴT σ̂′Ṽ T x + ω(t) (22)

where

ω(t) = W̃T σ̂′Ṽ T x + WT O(Ṽ T x)2 + ε + Fd

is called the disturbance term. One should note that the
pushing disturbance Fd, NN approximation error ε, and the



higher order terms in Taylor series expansion all have the
same weights as disturbance in the error system.

Several conditions must be imposed on the error system
in (22):

Condition-1: k should be positive definite.
Condition-2: Weights (W and V ) and activation function

σ should be bounded.
Condition-3: The first derivative of activation functions

should be bounded as well.
To satisfy the last two conditions, sigmoid function is a

good candidate since this function and its first differentiation
are both bounded by 1. Let the Lyapunov candidate to be
defined as:

L =
1
2
mr2 +

1
2
tr(W̃T F−1W̃ ) +

1
2
tr(Ṽ T G−1Ṽ ) (23)

Differentiating and substitution from (22) will yield:

L̇ = r[(km− kv)r + W̃T σ̂ + ŴT σ̂′Ṽ T x]

+tr(W̃T F−1 ˙̃W ) + tr(Ṽ T G−1 ˙̃V )

For the sake of simplicity, we have assumed that the
influence of disturbance ω(t) is negligible. Since,

rW̃T σ̂ = tr(W̃T σ̂r)

rŴT σ̂′Ṽ T x = tr(Ṽ T xrŴT σ̂′)

then, one can write:

L̇ = −(kv − km)r2

+tr{W̃T (F−1 ˙̃W + σ̂r)}
+tr{Ṽ T (G−1 ˙̃V + xrŴ σ̂′)} (24)

If tuning algorithms (18) hold, the last two terms in the right
hand side of (24) would become zero. Note that, since W

and V are constants, ˙̃W = − ˙̂
W and ˙̃V = − ˙̂

V . Then:

L̇ = −(kv − km)r2

The parameter (kv−km) is always positive as long as gains
of the outer PD tracking loop satisfy kv > km. This leads
to L̇ ≤ 0, and since L > 0, one can deduce the stability in
the sense of Lyapunov (SISL). Moreover, considering (16)
one can conclude the boundedness of all the terms in right
hand side of (4) and consequently the boundedness of ṙ. As
such, L̈ = −2(kv − km)rṙ is bounded and thus, L̇(t) is
uniformly continuous. Applying Barbalat’s Lemma [9] we
can conclude that L̇ should essentially approach to zero as t
goes to infinity and as a result, r(t) vanishes.

IV. SIMULATION RESULTS

To validate the proposed neural network control strategy,
in this section simulation of a micro-object manipulation is
presented. The nonlinear equation for Ff was employed from
a friction model proposed by [14] with some slight changes
to the modeled constants. Pushing of a micro-sized cube
aluminum with the dimension of 65µm × 65µm × 100µm
along a sinusoidal desired trajectory for a distance of 100µm
was simulated with a PD controller with and without neural

network compensation loop as showed in Fig. 2. PD gains
were tuned first for a PD-only controller to give the minimum
mean square error (MSE) over a specific range of gains. Then
gains were kept unchanged. A two-layer NN with 8 hidden
nodes was first trained and tested using hill-climbing back
propagation learning. Training sets were vectors of friction
forces in different velocities and constant temperature at 25
Celsius and constant relative humidity at 75%, calculated
from the model proposed in [14]. Other input parameters
in (2) were assumed unchanged. Then the NN model was
embedded into the control loop in Fig. 2.

Positioning error of micro object pushing along the trajec-
tory shown in Fig. 4 are depicted in Fig. 5 for conventional
PD and off-line trained neural network. As seen, with am-
bient condition kept unchanged, neural network has almost
completely cancelled out the error from the nonlinear part of
the dynamic equation. This figure indicates the superiority
of NN-based compensation over linear PD controllers.

Fig. 4. Micro-sized object pushing trajectory

Fig. 5. Positioning error for controlled pushing under the same ambient
condition as data collection for off-line NN training



Fig. 6. Positioning error for controlled pushing in different ambient
condition from data collection

Since scaling forces are highly subject to big changes
with small variation in ambient conditions or other unknown
parameters, we propose to tune the weights of off-line trained
neural network in real time with the algorithm discussed in
section III. The same trajectory simulation was repeated with
the previous neural network, but temperature and relative
humidity fell down from 25 Celsius degree and 70% to
15 Celsius degree and 40% respectively. This resulted in
about 10 to 20 percent deviation in the modeled scaling
forces in different velocities. Results of the displacement
error are illustrated in Fig. 6. While the error profile of
the conventional PD controller shows the same trend as in
Fig. 5, the error of static neural network suggest that it has
not been trained to compensate the dynamic scaling force
in the new ambient condition, and therefore dramatically
loses its capability of canceling out the nonlinear error. This
necessitates an unsupervised learning of the proposed NN in
a real-time fashion. Thus, online learning was implemented
on outer-layer weight matrix of W by learning rate of F =
0.05 and input layer weight matrix of V was kept unchanged.
W was not tuned at two small periods in the inception and
the end of pushing when the velocity was not high enough.
Derivative of the error is oscillatory and undesirably large
in low velocities and feeds back a big signal to the weight
tuning loop. This was because of the difficulty in modeling
the static friction which in reality exists at ”zero” velocity but
in modeling it exists when velocity is less than a ”threshold”.
Stick-slip is a common term to refer to this phenomenon at
very low speed of pushing [15]. It can be clearly seen in Fig.
6 that learning has begun around t = 0.013sec after which
neural network has rapidly adapted its weights to let the
controller achieve accurate positioning of the micro object.

V. CONCLUSION

In this work, we tackled the problem of controlling micro-
sized object pushing as the first stride toward automated
micro-sized object manipulation. Neural network as an in-
telligent tool was used in the absence of any reliable models

for scaling forces. All parameters affecting these forces in
micro-domain were studied and considered as potential to
the input vector of the neural network block. In addition, on-
line learning rules for weight matrices of a two-layer neural
network were derived to assure that the closed-loop system is
stable in the sense of Lyapunov. A complex nonlinear model
was adapted to represent the micro forces, as a function
of velocity, temperature and humidity. Simulation results
confirmed the efficiency of scaling force compensation by an
adaptive neural network. Some problem of inefficient online
learning was observed at low velocities where the modeled
scaling forces are acting as a piece-wise function of velocity.
To solve this problem, some preliminary studies on capability
of a neural network with modular structure in scaling force
approximation have been carried out. We believe a good
structure of a modular neural network is a better candidate for
the learning controller, especially at zero and low velocities
regions where discontinuity is present. In the continuation of
the current research, implementing the proposed controller
in a MEMS-micro actuator to precisely push a micro object
in an experimental setting is being currently investigated.
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